
Metric Space:
A metric space (X ,d) consists of a set X and a metric d : X ×X → R satisfying the following properties

for all x,y,z ∈ X :

1. Non-negativity: d(x,y)≥ 0 and d(x,y) = 0 if and only if x = y.

2. Symmetry: d(x,y) = d(y,x).

3. Triangle inequality: d(x,z)≤ d(x,y)+d(y,z).

Examples:

1. Euclidean space: Let X = Rn and d(x,y) = ∥x− y∥, where ∥ · ∥ denotes the Euclidean norm.

2. Discrete metric: Let X be any set, and define d(x,y) =

{
0 if x = y
1 if x ̸= y

.

3. Taxicab metric: Let X = R2 and d((x1,y1),(x2,y2)) = |x1 − x2|+ |y1 − y2|.

Open and Closed Balls in a Metric Space:
Let (X ,d) be a metric space.
Open Ball:
For x ∈ X and r > 0, the open ball centered at x with radius r is defined as

B(x,r) = {y ∈ X | d(x,y)< r}.

Closed Ball:
For x ∈ X and r > 0, the closed ball centered at x with radius r is defined as

B(x,r) = {y ∈ X | d(x,y)≤ r}.

Properties:

• The open ball B(x,r) is an open set in X .

• The closed ball B(x,r) is a closed set in X .

Example:
Consider the Euclidean space Rn with the Euclidean metric. The open ball centered at a point x ∈Rn with

radius r > 0 is given by
B(x,r) = {y ∈ Rn | ∥y− x∥< r},

and the closed ball is given by
B(x,r) = {y ∈ Rn | ∥y− x∥ ≤ r}.

Open Sets in a Metric Space:
Let (X ,d) be a metric space.
A subset U ⊆ X is called an open set if, for every point x ∈ U , there exists a positive real number ε > 0

such that the open ball B(x,ε) is contained in U .
Examples:

1. Open interval in R: Let X =R with the standard Euclidean metric. Then, for any a,b ∈R with a < b,
the open interval (a,b) is an open set.

2. Open ball in Euclidean space: Consider Rn with the Euclidean metric. For any x ∈ Rn and r > 0, the
open ball B(x,r) is an open set.

3. Deleted open disk in R2: Consider R2 with the Euclidean metric. Let D = {(x,y) ∈ R2 | x2 + y2 < 1}
be the open unit disk. The set D\{(0,0)} (deleted open disk) is an open set.
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4. Open set in discrete metric space: Consider any set X with the discrete metric d(x,y)=

{
0 if x = y
1 if x ̸= y

.

Then every subset of X is an open set.

Interior of a Set in a Metric Space:
Let (X ,d) be a metric space.
The interior of a subset A ⊆ X , denoted by int(A), is the largest open set contained in A. In other words,

int(A) consists of all points in A that are interior points of A.
Formally,

int(A) = {x ∈ A | there exists r > 0 such that B(x,r)⊆ A},

where B(x,r) is the open ball centered at x with radius r.
Example:
Consider the set A = {(x,y) ∈R2 | x2 +y2 < 1}. This set represents the open unit disk in R2. The interior

of A, denoted by int(A), is the set of points inside the disk, excluding the boundary. In this case,

int(A) = {(x,y) ∈ R2 | x2 + y2 < 1}.

Limit Point of a Set in a Metric Space:
Let (X ,d) be a metric space.
A point x ∈ X is called a limit point of a subset A ⊆ X if every open ball centered at x contains at least one

point of A different from x itself.
Formally, x is a limit point of A if for every ε > 0, the open ball B(x,ε) contains a point y ∈ A such that

y ̸= x.
Example:
Consider the set A =

{ 1
n

∣∣n ∈ N
}

in the metric space (R, | · |). The point 0 is a limit point of A since for
any ε > 0, the open ball B(0,ε) contains infinitely many points of A. However, 0 is not an element of A.

Derived Set, Closed Set, Closure of a Set, Dense Set:
Let (X ,d) be a metric space.

1. Derived Set: The derived set (also called the set of limit points or the set of accumulation points) of a
subset A ⊆ X , denoted by A′, is the set of all limit points of A.

2. Closed Set: A subset A ⊆ X is called closed if it contains all its limit points. In other words, A is closed
if A′ ⊆ A.

3. Closure of a Set: The closure of a subset A ⊆ X , denoted by A, is the smallest closed set containing A.
It is the union of A and its derived set, i.e., A = A∪A′.

4. Dense Set: A subset A ⊆ X is called dense in X if every point in X is either an element of A or a limit
point of A. In other words, the closure of A is the entire space X , i.e., A = X .

Examples:

1. Let X = R with the standard Euclidean metric.

(a) The derived set of the set A = (0,1)∪{2} is A′ = [0,1].

(b) The set A = [0,1] is closed.

(c) The closure of the set A = (0,1) is A = [0,1].

(d) The set A =Q (the set of rational numbers) is dense in R.

2. Let X = R2 with the Euclidean metric.

(a) The derived set of the set A= {(x,y)∈R2 | x2+y2 = 1} (unit circle) is A′ = {(x,y)∈R2 | x2+y2 =
1}.

(b) The set A = {(x,y) ∈ R2 | x2 + y2 ≤ 1} (closed unit disk) is closed.
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(c) The closure of the set A= {(x,y)∈R2 | x2+y2 < 1} (open unit disk) is A= {(x,y)∈R2 | x2+y2 ≤
1}.

(d) The set A =Q2 (the set of rational points in R2) is dense in R2.

Sequence and Subsequence in a Metric Space:
Let (X ,d) be a metric space.

1. Sequence: A sequence in X is a function f : N→ X , denoted by {xn}∞
n=1, where xn = f (n) for each

n ∈ N. In other words, it is an infinite list of elements in X indexed by natural numbers.

2. Subsequence: A subsequence of a sequence {xn}∞
n=1 is a sequence of the form {xnk}∞

k=1, where n1 <
n2 < n3 < .. . are strictly increasing natural numbers.

Examples:

1. Consider the metric space (R, | · |).

(a) The sequence {xn}∞
n=1 defined by xn =

1
n for n ≥ 1 converges to 0 as n approaches infinity.

(b) A subsequence of {xn}∞
n=1 can be obtained by selecting only those terms of the sequence for

which n is a power of 2, i.e., {x2k}∞
k=1 =

{ 1
2 ,

1
4 ,

1
8 , . . .

}
.

2. Consider the metric space (R2,d), where d((x1,y1),(x2,y2)) =
√
(x2 − x1)2 +(y2 − y1)2 is the Eu-

clidean distance.

(a) The sequence {(xn,yn)}∞
n=1 defined by xn =

1
n and yn =

1
n2 for n ≥ 1 converges to the point (0,0)

as n approaches infinity.

(b) A subsequence of {(xn,yn)}∞
n=1 can be obtained by selecting only those terms of the sequence for

which n is a prime number, i.e., {(xpk ,ypk)}∞
k=1, where pk is the k-th prime number.

Convergent Sequences, Cluster Points, and Cauchy Sequences in a Metric Space:
Let (X ,d) be a metric space.

1. Convergent Sequence: A sequence {xn}∞
n=1 in X is said to converge to a point x ∈ X if for every

ε > 0, there exists a positive integer N such that d(xn,x) < ε for all n ≥ N. In this case, we write
limn→∞ xn = x.

2. Cluster Point: A point x ∈ X is called a cluster point (or accumulation point) of a sequence {xn}∞
n=1 if

there exists a subsequence {xnk}∞
k=1 that converges to x.

3. Cauchy Sequence: A sequence {xn}∞
n=1 in X is called a Cauchy sequence if for every ε > 0, there

exists a positive integer N such that d(xm,xn)< ε for all m,n ≥ N.

Examples:

1. Convergent Sequence:

(a) In the metric space (R, | · |), the sequence {xn}∞
n=1 defined by xn =

1
n for n ≥ 1 converges to 0 as

n approaches infinity.

2. Cluster Point:

(a) In the metric space (R, | · |), the sequence {xn}∞
n=1 defined by xn = (−1)n has two cluster points:

−1 and 1.

3. Cauchy Sequence:

(a) In the metric space (R, | · |), the sequence {xn}∞
n=1 defined by xn = 1

n for n ≥ 1 is a Cauchy
sequence.
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Definition: A metric space (X ,d) is called complete if every Cauchy sequence in X converges to a point
in X .

Example: The real numbers R with the usual Euclidean distance d(x,y) = |x−y| form a complete metric
space.

Cantor’s Intersection Theorem: Given a sequence of closed intervals [a1,b1]⊇ [a2,b2]⊇ [a3,b3]⊇ . . .
in R, there exists a point x such that x ∈ [an,bn] for all n ∈ N.

Example: Consider the sequence of closed intervals defined recursively as follows:

[a1,b1] = [0,1]

[a2,b2] =

[
1
2
,1
]

[a3,b3] =

[
3
4
,1
]

...

Each interval is a closed subinterval of the previous one, and their intersection is the singleton set {1}, which
confirms Cantor’s Intersection Theorem.

Theorem: (Cantor’s Intersection Theorem) Given a sequence of closed intervals [a1,b1] ⊇ [a2,b2] ⊇
[a3,b3]⊇ . . . in R, there exists a point x such that x ∈ [an,bn] for all n ∈ N.

Proof: Let In = [an,bn] be the sequence of nested closed intervals.

1. Boundedness: Since each In is a closed interval, they are bounded.

2. Nested Intervals: By construction, each interval contains the next one, i.e., I1 ⊇ I2 ⊇ I3 ⊇ . . . .

3. Existence of a Point: Let x be a point in [a1,b1]. Since I1 ⊇ I2, x is also in [a2,b2]. By induction, x is
in every interval In, showing that x is in the intersection of all intervals.

Therefore, there exists a point x such that x ∈ [an,bn] for all n ∈ N, thus confirming Cantor’s Intersection
Theorem.

Definition: Let X and Y be topological spaces. A function f : X →Y is said to be continuous if for every
open set V ⊆ Y , the preimage f−1(V ) is open in X .

Examples:

1. Linear Function: f (x) = mx+b is continuous for any real numbers m and b.

2. Polynomial Function: f (x) = x2 and f (x) = x3 + 2x2 − 5 are continuous over their entire domain,
which is R.

3. Trigonometric Functions: Functions like f (x) = sin(x), f (x) = cos(x), and f (x) = tan(x) are contin-
uous over their respective domains.

4. Exponential Function: f (x) = ex (the natural exponential function) is continuous over the entire real
line.

5. Piecewise Continuous Function: The function f (x) = |x| is continuous everywhere except at x = 0.

Sequential Criterion: A function f : X → Y between topological spaces is continuous if and only if for
every sequence (xn) in X converging to x, the sequence ( f (xn)) converges to f (x).

Other Characterizations of Continuity:

1. Epsilon-Delta Definition: f : X →Y is continuous at x0 ∈ X if for every ε > 0, there exists δ > 0 such
that dX (x,x0)< δ implies dY ( f (x), f (x0))< ε .

2. Preimage of Open Sets: f : X → Y is continuous if the preimage of every open set in Y is an open set
in X .
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3. Limit of Compositions: Let f : X → Y and g : Y → Z be functions. If f is continuous at x0 and g is
continuous at f (x0), then g◦ f is continuous at x0.

Examples:

1. Consider the function f : R→R defined by f (x) = x2. It’s continuous everywhere since it satisfies the
epsilon-delta definition.

2. Let f : R→ R be defined by f (x) = sin(x). This function is continuous everywhere since it preserves
sequential convergence.

3. Define f : R→ R as f (x) =

{
1, if x ≥ 0
0, if x < 0

. This function is discontinuous at x = 0 since the preimage

of the open interval ( 1
2 ,

3
2 ) is not open.

Uniform Continuity of Composite Functions: Let f : X →Y and g : Y → Z be functions between metric
spaces. If f is uniformly continuous and g is continuous, then g◦ f is uniformly continuous.

Proof Sketch: Let ε > 0 be given. Since g is continuous, for any y1,y2 ∈ Y , if dY (y1,y2) < δ1, then
dZ(g(y1),g(y2))< ε . Similarly, since f is uniformly continuous, for the same ε , there exists δ2 > 0 such that
if dX (x1,x2)< δ2, then dY ( f (x1), f (x2))< δ1. Thus, for dX (x1,x2)< δ2, we have dZ(g( f (x1)),g( f (x2)))< ε ,
which shows that g◦ f is uniformly continuous.

Example: Let f :R→R be defined by f (x) = x2 and g :R→R be defined by g(x) =
√

x. f is continuous
but not uniformly continuous, while g is uniformly continuous. However, their composition g ◦ f (which is
g( f (x)) =

√
x2 = |x|) is uniformly continuous.

Homomorphism Definition: Let G and H be groups. A function ϕ : G → H is called a group homo-
morphism if for all g1,g2 ∈ G, ϕ(g1 · g2) = ϕ(g1) ·ϕ(g2), where · denotes the group operation in G and
H.

Example: Consider the function ϕ : Z → Z6 defined by ϕ(n) = n mod 6. This function is a group
homomorphism since for any m,n ∈ Z, we have ϕ(m + n) = (m + n) mod 6 = (m mod 6 + n mod 6)
mod 6 = ϕ(m)+ϕ(n).

Example: Let ϕ : R∗ → R∗ be defined by ϕ(x) = |x|. This function is a group homomorphism since for
any x,y ∈ R∗, we have ϕ(xy) = |xy|= |x| · |y|= ϕ(x) ·ϕ(y).

Homomorphism Definition: Let G and H be groups. A function ϕ : G → H is called a group homo-
morphism if for all g1,g2 ∈ G, ϕ(g1 · g2) = ϕ(g1) ·ϕ(g2), where · denotes the group operation in G and
H.

Example: Consider the function ϕ : (R,+) → (R∗, ·) defined by ϕ(x) = ex. This function is a group
homomorphism since for any x,y ∈ R, we have ϕ(x+ y) = ex+y = ex · ey = ϕ(x) ·ϕ(y).

Example: Let ϕ : (Z,+) → (Z6,+) be defined by ϕ(n) = n mod 6. This function is a group homo-
morphism since for any m,n ∈ Z, we have ϕ(m+n) = (m+n) mod 6 = (m mod 6+n mod 6) mod 6 =
ϕ(m)+ϕ(n).

Characterizations of Homomorphisms:

1. Preservation of Identity: A function ϕ : G → H between groups is a homomorphism if and only if
ϕ(eG) = eH , where eG and eH are the identities in G and H respectively.

2. Preservation of Inverses: A function ϕ : G → H between groups is a homomorphism if and only if
ϕ(g−1) = (ϕ(g))−1 for all g ∈ G.

Examples:

1. Consider the function ϕ : (Z,+) → (Z6,+) defined by ϕ(n) = n mod 6. This function is a group
homomorphism since it preserves the identity: ϕ(0) = 0 mod 6 = 0.

2. Let ϕ : (R∗, ·) → (R∗, ·) be defined by ϕ(x) = x2. This function is a group homomorphism since it
preserves inverses: ϕ(x−1) = (x−1)2 = (x2)−1 = (ϕ(x))−1.
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