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1 Introduction

Limit Definition:
The limit of a function f(x) as = approaches a value c is denoted by:
lim f(x) =L
Tr—cC
This means that as x gets arbitrarily close to ¢, the values of f(z) get arbitrarily close to L.
Formally, we say that L is the limit of f(x) as « approaches c if for every positive number ¢, there exists a positive
number § such that if 0 < |z — ¢| < 4, then |f(z) — L] < e.

Example:
Consider the function f(z) = 1 and the limit:

To find this limit, we observe the behavior of f(x) as x approaches 2. As x gets closer to 2, the values of f(z)
get larger. We can also observe this behavior from the right and left sides of 2:
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Since the left-hand limit and the right-hand limit do not approach the same value, the limit lim,_,5 % does not
exist. Epsilon-Delta Definition of a Limit:
Let f(x) be a function defined in an open interval containing ¢, except possibly at ¢ itself. We say that the limit
of f(x) as x approaches c¢ is L, denoted by
lim f(z) =L
r—cC
if for every positive number ¢, there exists a positive number ¢ such that if 0 < |z — ¢| < §, then |f(z) — L| < e.
In other words, for any given positive tolerance e, we can find a positive number § such that the distance between
f(x) and L is less than £ whenever x is within § units of ¢, excluding ¢ itself.
Example:
Consider the function f(x) = 2z — 1 and the limit

lim (22 — 1)
r—2
To prove that the limit is 3, we need to show that for any € > 0, there exists a § > 0 such that whenever
0<|z—2|<d, we have |2z — 1) — 3| <e.
Let’s choose € = 0.1. We want to find a d such that |(2z — 1) — 3| = |2z — 4| < 0.1 whenever 0 < |z — 2| < 0.
If we choose 6 = 0.05, then whenever 0 < |z — 2| < 0.05, we have |2z — 4] = |2(x — 2)| = 2|z — 2| < 0.1, which
satisfies the condition.
Thus, by choosing ¢ = 0.1 and § = 0.05, we have shown that the limit lim, (22 — 1) = 3.
Example of Limit Problem:
Let’s prove that the limit of the function f(x) = 3z — 1 as x approaches 2 is 5 using the epsilon-delta definition.



We want to show that for any given € > 0, there exists a § > 0 such that whenever 0 < |z — 2| < §, we have
|3z — 1) — 5] <e.

Given |(3z — 1) — 5] < &, we simplify to |3z — 6| < &, which further simplifies to |3(z — 2)| < €.

We need to bound |z — 2|, so we choose § = £.

Now, whenever 0 < |z — 2| < 6 = 5, we have [3(z —2)| <3 -5 =¢.

Thus, by choosing ¢ = 5, we have shown that the limit lim, ,2(3z — 1) = 5.

Continuity of Functions:

A function f(x) is said to be continuous at a point c if the following conditions are met:

1. The function f(z) is defined at c.
2. The limit lim,_,. f(z) exists.
3. The value of the limit lim,_,. f(x) equals f(c).

If a function is continuous at every point in its domain, it is called a continuous function.
Types of Discontinuities:

e Removable Discontinuity: A removable discontinuity occurs when there is a hole or gap in the graph of the
function that can be filled in by redefining the function at a single point.

e Jump Discontinuity: A jump discontinuity occurs when the left-hand and right-hand limits exist, but they
are not equal.

e Infinite Discontinuity: An infinite discontinuity occurs when the function approaches positive or negative
infinity as it approaches a point from both sides.

Example:
Consider the function f(z) = £=.

This function is not defined at x = 1 since it results in division by zero. However, if we simplify the function, we
get f(x) = x + 1, which is defined at z = 1 and equals 2.

Thus, the function f(z) has a removable discontinuity at z = 1. Example with Solution:

Consider the function f(z) = /.

To determine the continuity of f(x), we need to check if it satisfies the conditions for continuity at all points in
its domain.

Solution:

1. Function Defined: The function f(x) = y/z is defined for z > 0, which means it is defined at all points in
its domain.

2. Limit Exists: Let’s consider the limit lim,_,./z as & approaches any point ¢ in its domain (¢ > 0).

If we approach ¢ from the right side (z > ¢), we have:

lim+ Vz =+/c

Tr—C
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If we approach ¢ from the left side (xz < ¢), we have:

lim vz = +/c

Tr—c—
So, the limit exists for all points ¢ in the domain of f(x).
3. Value of Limit Equals f(c): For any point ¢ in the domain of f(z), we have f(c) = +/c.
Therefore, lim,_,. v/2 = f(c), satisfying the condition for continuity at all points in the domain.
Hence, the function f(z) = /z is continuous for z > 0.
Differentiability:
A function f(z) is said to be differentiable at a point ¢ if the following limit exists:

f/(c) — lim f(C+ h) — f(C)

h—0 h

If this limit exists, f(x) is said to be differentiable at ¢, and f’(c) is called the derivative of f(z) at c.
Example 1:



Consider the function f(z) = 322 — 2z + 1.
To find where f(x) is differentiable, we need to compute its derivative f/(z) using the limit definition.

Solution:
We have:
h) —
) — tim TN @)
h—0
. 3(x+h)?—2+h)+1— (32> —22+1)
= lim
h—0 h
— lim 3(2% +2hx + h?) =22 —2h+1— 322 + 22 — 1
o h—0 h
— lim 322 +6hz+3h? —2x —2h+1—322+2x—1
o h—0 h
6hz + 3R — 2h
=lim —M——
h—0 h

= lim (62 + 3h — 2)
h—0
=6r — 2

So, f'(z) = 6z — 2.

Since this derivative is a polynomial, it is defined for all real numbers 2, and thus, f(z) is differentiable everywhere.
Example 2:

Consider the function f(z) = |z|.

To determine where f(x) is differentiable, let’s compute its derivative using the limit definition.

Solution:
We have:
. +h)— f(x)
o S
fi(a) = lim 5
i I lal
h—0 h

The behavior of |2+ h| depends on the sign of -+ h. If 2 + h is positive, then |x + h| = x4+ h. If 2+ h is negative,
then |z +h|=—(z+h) = -z — h.

Therefore, |z + h| — |2| = (£ 4+ h) —x = h when x + h is positive, and |+ h| — x| = —(z + h) — (—z) = —h when
x + h is negative.

So, the derivative f’(x) will be different depending on the sign of x.

If > 0, then:
()= lim — =1
fla)= lm 7
If x <0, then:
"(z) = lim — = —1
Fo =,

At x = 0, the function is not differentiable because the left-hand and right-hand limits of f’(z) are different.

Therefore, f(z) is differentiable everywhere except at x = 0

Uniform Continuity:

A function f(x) is said to be uniformly continuous on an interval [a, b] if for every € > 0, there exists a § > 0
such that for all z,y in [a, b], if |z — y| < §, then |f(z) — f(y)] <e.

In other words, the choice of § depends only on € and not on the specific points = and y.

Example:

Consider the function f(x) = /= defined on the interval [0, 1].

We want to determine whether f(z) is uniformly continuous on this interval.

Solution:

To prove uniform continuity, we need to show that for any £ > 0, there exists a § > 0 such that for all z,y in
[0,1], if |z — y| < 4, then |f(z) — f(y)| < e.

Since f(z) = v/ is a continuous function on the closed interval [0, 1], it is uniformly continuous on this interval.



This is because for any & > 0, we can choose § = €2 such that for all z, y in [0, 1], if [x—y| < , then | f(z)—f(y)| < €.
Thus, f(z) = \/x is uniformly continuous on the interval [0, 1].

Example 1:

Let f(x) = 2z on the interval [0, 1]. We want to show that f(z) is uniformly continuous on [0, 1].

Solution:

Given any € > 0, choose 0 = 5. Then, for any z1, 22 € [0, 1] such that [z; — 22| <, we have

1f(@1) — f@2)| = 221 — 22| = 2|21 — 22| < 26 = 2 (g) =«

Therefore, f(z) is uniformly continuous on [0, 1].

Example 2:

Let g(x) = sin(x) on the interval [0, 7]. We want to show that g(z) is uniformly continuous on [0, 7].
Solution:

Given any € > 0, choose § = e. Then, for any 1,25 € [0, 7] such that |z; — 22| < §, we have

lg(z1) — g(w2)| = |sin(z1) — sin(ze)| < 21 — 22| < J =e.

Therefore, g(z) is uniformly continuous on [0, 7].

Boundedness Theorem (Heine-Borel Theorem):

A subset E of R™ is compact if and only if it is closed and bounded.

Proof:

(=) Suppose E is compact. Then F is closed and bounded.

(<) Suppose F is closed and bounded. We want to show that E is compact.

Since E is bounded, there exists M > 0 such that ||z|| < M for all x € E, where ||-|| denotes the Euclidean norm.

Now, let {z1} be any sequence in E. Since E is bounded, by Bolzano-Weierstrass theorem, there exists a
convergent subsequence {zy; } of {xx}. Let v, — x as j — oo. Since F is closed, z € E.

Therefore, E is sequentially compact, and by the equivalence of compactness and sequential compactness in R",
FE is compact.

Intermediate Value Theorem (IVT):

Let f be a continuous function on a closed interval [a,b]. If yo lies between f(a) and f(b), then there exists ¢ in
[a, ] such that f(c) = yo.

Proof:

Counsider the function g(z) = f(z) — yo. Since f is continuous on [a, b], g is also continuous on [a, b].

Observe that g(a) = f(a) —yo < 0 and g(b) = f(b) — yo > 0 since yo lies between f(a) and f(b).

By the Intermediate Value Theorem for continuous functions, there exists ¢ in [a, b] such that g(c) = 0, which
implies f(c) = yo.

Intermediate Value Theorem (IVT):

Let f be a continuous function on a closed interval [a,b]. If yo lies between f(a) and f(b), then there exists ¢ in
[a, b] such that f(c) = yo.

Proof:

Consider the function g(z) = f(x) — yo. Since f is continuous on [a, b], g is also continuous on [a, b].

Observe that g(a) = f(a) —yo < 0 and g(b) = f(b) — yo > 0 since yp lies between f(a) and f(b).

By the Intermediate Value Theorem for continuous functions, there exists ¢ in [a, b] such that g(c) = 0, which
implies f(c) = yo.

Extreme Value Theorem (EVT):

Let f be a continuous function on a closed interval [a, b]. Then, there exist points ¢ and d in [a, b] such that f(c)
is the maximum value of f on [a,b] and f(d) is the minimum value of f on [a, b].

Proof:

Consider the set S = {f(z) : « € [a, b]}, the range of f on [a,b].

Since f is continuous on the closed interval [a,b], by the Extreme Value Theorem for continuous functions, S is
a closed and bounded set.

Therefore, S has a maximum element, say M, and a minimum element, say m.

By definition of S, there exist ¢ and d in [a, b] such that f(c) = M and f(d) = m, respectively.

Thus, f(c) is the maximum value of f on [a,b], and f(d) is the minimum value of f on [a, b].

Darboux Intermediate Value Theorem (IVT):

Let f be a real-valued function defined on a closed interval [a,b]. If f is continuous on [a,b], then for any y
between f(a) and f(b), there exists ¢ in (a,b) such that f(c) = y.



Proof:

Assume, without loss of generality, that f(a) < f(b). Let y be a real number between f(a) and f(b).
Define g(z) = f(z) — y. Then g(a) < 0 and g(b) > 0.

Since f is continuous on [a,b], ¢ is also continuous on [a, b].

By the Intermediate Value Theorem, there exists ¢ in (a,b) such that g(c) = 0, which implies f(c) = y.
Chain Rule:

Let f(z) and g(x) be differentiable functions. If y = f(g(x)), then /' = f'(g(z)) - ¢'(x).

Proof:

Consider the function h(z) = f(g(x)).

By the definition of the derivative, we have

W) =t F0E D)~ flo(@)

Az—0 Az

Since f is differentiable at g(x), we can write f(g(x+ Ax)) — f(g(z)) as f'(g(x)) - ¢’ (x) - Az + e(Ax), where e(Ax)
approaches 0 as Ax approaches 0.
Therefore,

W(x) = f'(9(x)) - ¢ (x) + Jim_ G(AA; !

Since limaz 0 C(AA;) approaches 0 as Az approaches 0, we have h/(x) = f’(g(x)) - ¢’(x), which proves the Chain
Rule.

Definition:

A sequence is an ordered list of numbers written in a specific order. It can be finite or infinite.

Examples:

1. The sequence (a,) defined by a, = n? for n = 1,2,3,... is an example of an infinite sequence. Its terms are
1,4,9,16,. . ..

2. The sequence (b,,) defined by b, = % for n =1,2,3,... is another example of an infinite sequence. Its terms
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are 1, 553140

3. The sequence (c,,) defined by ¢, = (—1)" for n = 1,2,3,... is an example of an infinite sequence alternating

between —1 and 1. Its terms are —1,1,—1,1,....

4. The sequence (d,) defined by d,, = sin (”2—”) forn =1,2,3,... is an example of an infinite sequence oscillating
between —1 and 1 with period 4. Its terms are 1,0,—1,0,1,0,—1,0,....
Definition:

The limit of a sequence (a,,) as n approaches infinity, denoted by lim,,_, oo @, is the number L such that for every
positive number ¢, there exists a positive integer N such that |a, — L| < € for all n > N.
Examples:

1.

. Consider the sequence (c;,) defined by ¢, =

Consider the sequence (a,,) defined by a,, = % forn=1,2,3,.... We claim that lim,,_,. a, = 0.

Given € > 0, choose N = (%1 Then for all n > N, we have |a, — 0| = % < % < ¢. Thus, lim,_, a, = 0.

Let (b,,) be the sequence defined by b, = (—1)" for n = 1,2,3,.... We claim that this sequence does not
converge.

Suppose for contradiction that lim,, . (—1)" = L. Then for every positive number ¢, there exists N such that
|(=1)" — L| < € for all n > N. However, notice that (—=1)¥*! — L > € and (=1)V*2 — L < —¢, which is a
contradiction since L cannot simultaneously be less than and greater than e. Therefore, (b,,) does not converge.

2 . .
= nA3ntl for 9 = 1,2,3,.... We claim that lim, . ¢, = 1.
n?—-2n+1
n*(1+3+%) 14344
n2(1-2+1L) = 1-24+ %~

Rewrite ¢, as ¢, =

14040 =1

Asn — oo, % and % approach 0, and # approaches 0 even faster. Therefore, lim,, o ¢, = 75 0




