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1 Introduction

Limit Definition:
The limit of a function f(x) as x approaches a value c is denoted by:

lim
x→c

f(x) = L

This means that as x gets arbitrarily close to c, the values of f(x) get arbitrarily close to L.
Formally, we say that L is the limit of f(x) as x approaches c if for every positive number ε, there exists a positive

number δ such that if 0 < |x− c| < δ, then |f(x)− L| < ε.
Example:
Consider the function f(x) = 1

x and the limit:

lim
x→2

1

x

To find this limit, we observe the behavior of f(x) as x approaches 2. As x gets closer to 2, the values of f(x)
get larger. We can also observe this behavior from the right and left sides of 2:

lim
x→2+

1

x
= +∞

lim
x→2−

1

x
= −∞

Since the left-hand limit and the right-hand limit do not approach the same value, the limit limx→2
1
x does not

exist. Epsilon-Delta Definition of a Limit:
Let f(x) be a function defined in an open interval containing c, except possibly at c itself. We say that the limit

of f(x) as x approaches c is L, denoted by
lim
x→c

f(x) = L

if for every positive number ε, there exists a positive number δ such that if 0 < |x− c| < δ, then |f(x)− L| < ε.
In other words, for any given positive tolerance ε, we can find a positive number δ such that the distance between

f(x) and L is less than ε whenever x is within δ units of c, excluding c itself.
Example:
Consider the function f(x) = 2x− 1 and the limit

lim
x→2

(2x− 1)

To prove that the limit is 3, we need to show that for any ε > 0, there exists a δ > 0 such that whenever
0 < |x− 2| < δ, we have |(2x− 1)− 3| < ε.

Let’s choose ε = 0.1. We want to find a δ such that |(2x− 1)− 3| = |2x− 4| < 0.1 whenever 0 < |x− 2| < δ.
If we choose δ = 0.05, then whenever 0 < |x − 2| < 0.05, we have |2x − 4| = |2(x − 2)| = 2|x − 2| < 0.1, which

satisfies the condition.
Thus, by choosing ε = 0.1 and δ = 0.05, we have shown that the limit limx→2(2x− 1) = 3.
Example of Limit Problem:
Let’s prove that the limit of the function f(x) = 3x− 1 as x approaches 2 is 5 using the epsilon-delta definition.
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We want to show that for any given ε > 0, there exists a δ > 0 such that whenever 0 < |x − 2| < δ, we have
|(3x− 1)− 5| < ε.

Given |(3x− 1)− 5| < ε, we simplify to |3x− 6| < ε, which further simplifies to |3(x− 2)| < ε.
We need to bound |x− 2|, so we choose δ = ε

3 .
Now, whenever 0 < |x− 2| < δ = ε

3 , we have |3(x− 2)| < 3 · ε
3 = ε.

Thus, by choosing δ = ε
3 , we have shown that the limit limx→2(3x− 1) = 5.

Continuity of Functions:
A function f(x) is said to be continuous at a point c if the following conditions are met:

1. The function f(x) is defined at c.

2. The limit limx→c f(x) exists.

3. The value of the limit limx→c f(x) equals f(c).

If a function is continuous at every point in its domain, it is called a continuous function.
Types of Discontinuities:

• Removable Discontinuity: A removable discontinuity occurs when there is a hole or gap in the graph of the
function that can be filled in by redefining the function at a single point.

• Jump Discontinuity: A jump discontinuity occurs when the left-hand and right-hand limits exist, but they
are not equal.

• Infinite Discontinuity: An infinite discontinuity occurs when the function approaches positive or negative
infinity as it approaches a point from both sides.

Example:

Consider the function f(x) = x2−1
x−1 .

This function is not defined at x = 1 since it results in division by zero. However, if we simplify the function, we
get f(x) = x+ 1, which is defined at x = 1 and equals 2.

Thus, the function f(x) has a removable discontinuity at x = 1. Example with Solution:
Consider the function f(x) =

√
x.

To determine the continuity of f(x), we need to check if it satisfies the conditions for continuity at all points in
its domain.

Solution:
1. Function Defined: The function f(x) =

√
x is defined for x ≥ 0, which means it is defined at all points in

its domain.
2. Limit Exists: Let’s consider the limit limx→c

√
x as x approaches any point c in its domain (c ≥ 0).

If we approach c from the right side (x > c), we have:

lim
x→c+

√
x =

√
c

If we approach c from the left side (x < c), we have:

lim
x→c−

√
x =

√
c

So, the limit exists for all points c in the domain of f(x).
3. Value of Limit Equals f(c): For any point c in the domain of f(x), we have f(c) =

√
c.

Therefore, limx→c
√
x = f(c), satisfying the condition for continuity at all points in the domain.

Hence, the function f(x) =
√
x is continuous for x ≥ 0.

Differentiability:
A function f(x) is said to be differentiable at a point c if the following limit exists:

f ′(c) = lim
h→0

f(c+ h)− f(c)

h

If this limit exists, f(x) is said to be differentiable at c, and f ′(c) is called the derivative of f(x) at c.
Example 1:
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Consider the function f(x) = 3x2 − 2x+ 1.
To find where f(x) is differentiable, we need to compute its derivative f ′(x) using the limit definition.
Solution:
We have:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

3(x+ h)2 − 2(x+ h) + 1− (3x2 − 2x+ 1)

h

= lim
h→0

3(x2 + 2hx+ h2)− 2x− 2h+ 1− 3x2 + 2x− 1

h

= lim
h→0

3x2 + 6hx+ 3h2 − 2x− 2h+ 1− 3x2 + 2x− 1

h

= lim
h→0

6hx+ 3h2 − 2h

h

= lim
h→0

(6x+ 3h− 2)

= 6x− 2

So, f ′(x) = 6x− 2.
Since this derivative is a polynomial, it is defined for all real numbers x, and thus, f(x) is differentiable everywhere.
Example 2:
Consider the function f(x) = |x|.
To determine where f(x) is differentiable, let’s compute its derivative using the limit definition.
Solution:
We have:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

|x+ h| − |x|
h

The behavior of |x+h| depends on the sign of x+h. If x+h is positive, then |x+h| = x+h. If x+h is negative,
then |x+ h| = −(x+ h) = −x− h.

Therefore, |x+ h| − |x| = (x+ h)− x = h when x+ h is positive, and |x+ h| − |x| = −(x+ h)− (−x) = −h when
x+ h is negative.

So, the derivative f ′(x) will be different depending on the sign of x.
If x > 0, then:

f ′(x) = lim
h→0+

h

h
= 1

If x < 0, then:

f ′(x) = lim
h→0−

−h

h
= −1

At x = 0, the function is not differentiable because the left-hand and right-hand limits of f ′(x) are different.
Therefore, f(x) is differentiable everywhere except at x = 0
Uniform Continuity:
A function f(x) is said to be uniformly continuous on an interval [a, b] if for every ε > 0, there exists a δ > 0

such that for all x, y in [a, b], if |x− y| < δ, then |f(x)− f(y)| < ε.
In other words, the choice of δ depends only on ε and not on the specific points x and y.
Example:
Consider the function f(x) =

√
x defined on the interval [0, 1].

We want to determine whether f(x) is uniformly continuous on this interval.
Solution:
To prove uniform continuity, we need to show that for any ε > 0, there exists a δ > 0 such that for all x, y in

[0, 1], if |x− y| < δ, then |f(x)− f(y)| < ε.
Since f(x) =

√
x is a continuous function on the closed interval [0, 1], it is uniformly continuous on this interval.
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This is because for any ε > 0, we can choose δ = ε2 such that for all x, y in [0, 1], if |x−y| < δ, then |f(x)−f(y)| < ε.
Thus, f(x) =

√
x is uniformly continuous on the interval [0, 1].

Example 1:
Let f(x) = 2x on the interval [0, 1]. We want to show that f(x) is uniformly continuous on [0, 1].
Solution:
Given any ϵ > 0, choose δ = ϵ

2 . Then, for any x1, x2 ∈ [0, 1] such that |x1 − x2| < δ, we have

|f(x1)− f(x2)| = |2x1 − 2x2| = 2|x1 − x2| < 2δ = 2
( ϵ

2

)
= ϵ.

Therefore, f(x) is uniformly continuous on [0, 1].
Example 2:
Let g(x) = sin(x) on the interval [0, π]. We want to show that g(x) is uniformly continuous on [0, π].
Solution:
Given any ϵ > 0, choose δ = ϵ. Then, for any x1, x2 ∈ [0, π] such that |x1 − x2| < δ, we have

|g(x1)− g(x2)| = | sin(x1)− sin(x2)| ≤ |x1 − x2| < δ = ϵ.

Therefore, g(x) is uniformly continuous on [0, π].
Boundedness Theorem (Heine-Borel Theorem):
A subset E of Rn is compact if and only if it is closed and bounded.
Proof:
(⇒) Suppose E is compact. Then E is closed and bounded.
(⇐) Suppose E is closed and bounded. We want to show that E is compact.
Since E is bounded, there exists M > 0 such that ∥x∥ ≤ M for all x ∈ E, where ∥·∥ denotes the Euclidean norm.
Now, let {xk} be any sequence in E. Since E is bounded, by Bolzano-Weierstrass theorem, there exists a

convergent subsequence {xkj
} of {xk}. Let xkj

→ x as j → ∞. Since E is closed, x ∈ E.
Therefore, E is sequentially compact, and by the equivalence of compactness and sequential compactness in Rn,

E is compact.
Intermediate Value Theorem (IVT):
Let f be a continuous function on a closed interval [a, b]. If y0 lies between f(a) and f(b), then there exists c in

[a, b] such that f(c) = y0.
Proof:
Consider the function g(x) = f(x)− y0. Since f is continuous on [a, b], g is also continuous on [a, b].
Observe that g(a) = f(a)− y0 < 0 and g(b) = f(b)− y0 > 0 since y0 lies between f(a) and f(b).
By the Intermediate Value Theorem for continuous functions, there exists c in [a, b] such that g(c) = 0, which

implies f(c) = y0.
Intermediate Value Theorem (IVT):
Let f be a continuous function on a closed interval [a, b]. If y0 lies between f(a) and f(b), then there exists c in

[a, b] such that f(c) = y0.
Proof:
Consider the function g(x) = f(x)− y0. Since f is continuous on [a, b], g is also continuous on [a, b].
Observe that g(a) = f(a)− y0 < 0 and g(b) = f(b)− y0 > 0 since y0 lies between f(a) and f(b).
By the Intermediate Value Theorem for continuous functions, there exists c in [a, b] such that g(c) = 0, which

implies f(c) = y0.
Extreme Value Theorem (EVT):
Let f be a continuous function on a closed interval [a, b]. Then, there exist points c and d in [a, b] such that f(c)

is the maximum value of f on [a, b] and f(d) is the minimum value of f on [a, b].
Proof:
Consider the set S = {f(x) : x ∈ [a, b]}, the range of f on [a, b].
Since f is continuous on the closed interval [a, b], by the Extreme Value Theorem for continuous functions, S is

a closed and bounded set.
Therefore, S has a maximum element, say M , and a minimum element, say m.
By definition of S, there exist c and d in [a, b] such that f(c) = M and f(d) = m, respectively.
Thus, f(c) is the maximum value of f on [a, b], and f(d) is the minimum value of f on [a, b].
Darboux Intermediate Value Theorem (IVT):
Let f be a real-valued function defined on a closed interval [a, b]. If f is continuous on [a, b], then for any y

between f(a) and f(b), there exists c in (a, b) such that f(c) = y.
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Proof:
Assume, without loss of generality, that f(a) < f(b). Let y be a real number between f(a) and f(b).
Define g(x) = f(x)− y. Then g(a) < 0 and g(b) > 0.
Since f is continuous on [a, b], g is also continuous on [a, b].
By the Intermediate Value Theorem, there exists c in (a, b) such that g(c) = 0, which implies f(c) = y.
Chain Rule:
Let f(x) and g(x) be differentiable functions. If y = f(g(x)), then y′ = f ′(g(x)) · g′(x).
Proof:
Consider the function h(x) = f(g(x)).
By the definition of the derivative, we have

h′(x) = lim
∆x→0

f(g(x+∆x))− f(g(x))

∆x
.

Since f is differentiable at g(x), we can write f(g(x+∆x))−f(g(x)) as f ′(g(x)) ·g′(x) ·∆x+ ϵ(∆x), where ϵ(∆x)
approaches 0 as ∆x approaches 0.

Therefore,

h′(x) = f ′(g(x)) · g′(x) + lim
∆x→0

ϵ(∆x)

∆x
.

Since lim∆x→0
ϵ(∆x)
∆x approaches 0 as ∆x approaches 0, we have h′(x) = f ′(g(x)) · g′(x), which proves the Chain

Rule.
Definition:
A sequence is an ordered list of numbers written in a specific order. It can be finite or infinite.
Examples:

1. The sequence (an) defined by an = n2 for n = 1, 2, 3, . . . is an example of an infinite sequence. Its terms are
1, 4, 9, 16, . . ..

2. The sequence (bn) defined by bn = 1
n for n = 1, 2, 3, . . . is another example of an infinite sequence. Its terms

are 1, 1
2 ,

1
3 ,

1
4 , . . ..

3. The sequence (cn) defined by cn = (−1)n for n = 1, 2, 3, . . . is an example of an infinite sequence alternating
between −1 and 1. Its terms are −1, 1,−1, 1, . . ..

4. The sequence (dn) defined by dn = sin
(
nπ
2

)
for n = 1, 2, 3, . . . is an example of an infinite sequence oscillating

between −1 and 1 with period 4. Its terms are 1, 0,−1, 0, 1, 0,−1, 0, . . ..

Definition:
The limit of a sequence (an) as n approaches infinity, denoted by limn→∞ an, is the number L such that for every

positive number ϵ, there exists a positive integer N such that |an − L| < ϵ for all n > N .
Examples:

1. Consider the sequence (an) defined by an = 1
n for n = 1, 2, 3, . . .. We claim that limn→∞ an = 0.

Given ϵ > 0, choose N = ⌈ 1
ϵ ⌉. Then for all n > N , we have |an − 0| = 1

n < 1
N ≤ ϵ. Thus, limn→∞ an = 0.

2. Let (bn) be the sequence defined by bn = (−1)n for n = 1, 2, 3, . . .. We claim that this sequence does not
converge.

Suppose for contradiction that limn→∞(−1)n = L. Then for every positive number ϵ, there exists N such that
|(−1)n − L| < ϵ for all n > N . However, notice that (−1)N+1 − L > ϵ and (−1)N+2 − L < −ϵ, which is a
contradiction since L cannot simultaneously be less than and greater than ϵ. Therefore, (bn) does not converge.

3. Consider the sequence (cn) defined by cn = n2+3n+1
n2−2n+1 for n = 1, 2, 3, . . .. We claim that limn→∞ cn = 1.

Rewrite cn as cn =
n2(1+ 3

n+ 1
n2 )

n2(1− 2
n+ 1

n2 )
=

1+ 3
n+ 1

n2

1− 2
n+ 1

n2
.

As n → ∞, 3
n and 2

n approach 0, and 1
n2 approaches 0 even faster. Therefore, limn→∞ cn = 1+0+0

1−0+0 = 1.
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