A differential equation is an equation involving a function and its derivatives. It can be written in the form:

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

where y is the unknown function of x, and $y', y'', \ldots, y^{(n)}$ denote its derivatives with respect to x up to order n. **Exact Differential Equation:**

An exact differential equation is a type of differential equation that can be expressed in the form:

$$M(x, y) \, dx + N(x, y) \, dy = 0$$

where M(x,y) and N(x,y) are functions of two variables x and y, and their first partial derivatives with respect to y and x, respectively, are equal, i.e., $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

Example:

Consider the differential equation:

$$(2x + 3y) \, dx + (x - 2y) \, dy = 0$$

Here, M(x,y) = 2x + 3y and N(x,y) = x - 2y. To check for exactness, we find their partial derivatives:

$$\frac{\partial M}{\partial y} = 3$$
$$\frac{\partial N}{\partial x} = 1$$

Since $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, the equation is exact. Homogeneous Differential Equation: A homogeneous differential equation is a differential equation that can be expressed in the form:

$$M(x, y) \, dx + N(x, y) \, dy = 0$$

where M(x,y) and N(x,y) are functions of two variables x and y, and they are homogeneous functions of the same degree.

Example:

Consider the differential equation:

$$\left(x^2 + y^2\right)dx - xy\,dy = 0$$

Here, $M(x,y) = x^2 + y^2$ and N(x,y) = -xy. To check for homogeneity, let's substitute $x = \lambda x'$ and $y = \lambda y'$, where λ is a constant:

$$M(\lambda x', \lambda y') = (\lambda x')^2 + (\lambda y')^2$$
$$= \lambda^2 (x'^2 + y'^2)$$
$$= \lambda^2 M(x', y')$$

Similarly,

$$N(\lambda x', \lambda y') = -\lambda x' \lambda y'$$

= $-\lambda^2 x y$
= $\lambda^2 N(x', y')$

Since $M(\lambda x', \lambda y') = \lambda^2 M(x', y')$ and $N(\lambda x', \lambda y') = \lambda^2 N(x', y')$, the equation is homogeneous.

Linear First-Order Differential Equation:

A linear first-order differential equation is a differential equation that can be expressed in the form:

$$\frac{dy}{dx} + P(x)y = Q(x)$$

where P(x) and Q(x) are functions of x only.

Example:

Consider the differential equation:

$$\frac{dy}{dx} + 2xy = e^x$$

This is a linear first-order differential equation with P(x) = 2x and $Q(x) = e^x$. First-Order Differential Equation with Higher Degree:

A first-order differential equation with higher degree typically refers to equations where the highest derivative of the dependent variable is of order higher than 1. An example is:

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = 0$$

This is a first-order differential equation with a second-degree derivative term.

Example:

Consider the differential equation:

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = 0$$

This equation can be rewritten as:

$$y'' + xy' - y = 0$$

where y'' denotes the second derivative of y with respect to x, and y' denotes the first derivative of y with respect to x. Linear Differential Equation of Order Greater Than 1:

A *linear differential equation* of order greater than 1 is a differential equation that can be expressed in the general form:

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = F(x)$$

where $a_n(x), a_{n-1}(x), \ldots, a_1(x), a_0(x)$ and F(x) are functions of x only, y is the dependent variable, and $\frac{d^{\kappa}y}{dx^k}$ represents the kth derivative of y with respect to x.

Example:

Consider the linear differential equation of second order:

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^x$$

This equation can be expressed in the general form with n = 2, $a_2(x) = 1$, $a_1(x) = 2$, $a_0(x) = 1$, and $F(x) = e^x$. Example with Solution:

Consider the linear differential equation of second order:

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$$

Solution:

To solve this differential equation, we first find the characteristic equation:

$$r^2 - 3r + 2 = 0$$

The roots of this quadratic equation are $r_1 = 1$ and $r_2 = 2$.

Therefore, the general solution of the differential equation is given by:

$$y(x) = C_1 e^x + C_2 e^{2x}$$

where C_1 and C_2 are arbitrary constants determined by initial conditions or boundary conditions. Example with Solution:

Consider the linear differential equation of third order:

$$\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0$$

Solution:

To solve this differential equation, we first find the characteristic equation:

$$r^3 - 2r^2 + r - 1 = 0$$

This can be factored as $(r-1)^3 = 0$, so the root r = 1 has a multiplicity of 3.

Therefore, the general solution of the differential equation is given by:

$$y(x) = (C_1 + C_2 x + C_3 x^2)e^x$$

where C_1 , C_2 , and C_3 are arbitrary constants determined by initial conditions or boundary conditions. Example with Solution:

Consider the linear differential equation of fourth order:

$$\frac{d^4y}{dx^4} - 4\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + y = 0$$

Solution:

To solve this differential equation, we first find the characteristic equation:

$$r^4 - 4r^3 + 6r^2 - 4r + 1 = 0$$

This equation can be factored as $(r-1)^4 = 0$, so the root r = 1 has a multiplicity of 4.

Therefore, the general solution of the differential equation is given by:

$$y(x) = (C_1 + C_2 x + C_3 x^2 + C_4 x^3)e^x$$

where C_1 , C_2 , C_3 , and C_4 are arbitrary constants determined by initial conditions or boundary conditions. Types of Matrices:

1. Row Matrix:

2. Column Matrix:

 $\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$ $\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$

3. Square Matrix:

0.	Square matrini				
		a_{11}	a_{12}	• • •	a_{1n}
		a_{21}	a_{22}		a_{2n}
		$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix}$	÷	۰.	÷
		a_{n1}	a_{n2}		a_{nn}
4.	Diagonal Matrix:				
		d_1	0		0]
		0	d_2		0
		.			$\begin{bmatrix} 0 \\ 0 \\ \vdots \\ d_n \end{bmatrix}$
			:	••	
		Γu	0	• • •	d_n
5.	Identity Matrix:				
		[1	0	• • •	0
		0	1	• • •	$\begin{array}{c} 0\\ 0\\ \vdots\\ 1 \end{array}$
		:	÷	•.	:
			:	•	1
		Lo	0	•••	Ţ
6	Zero Matrix:				
0.		ΓO	0		[0
		0	0		0
		.			$\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$
			:	••	:
		LO	0	•••	0]

Rank of a Matrix:

The rank of a matrix is the maximum number of linearly independent rows or columns in the matrix. It is denoted by $\operatorname{rank}(A)$.

Example:

Consider the matrix A:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

To find the rank of matrix A, we can perform row operations to reduce it to row-echelon form or reduced row-echelon form.

For matrix A, we can see that the third row is a multiple of the first row. So, the rank of matrix A is rank(A) = 2. Example with Solution:

Consider the matrix A:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

To find the rank of matrix A, we can perform row operations to reduce it to row-echelon form or reduced row-echelon form.

First, we subtract twice the first row from the second row and thrice the first row from the third row to get:

[1	2	3]
0	0	0
0	0	0

Since the second and third rows are identical, we only have two linearly independent rows. Therefore, the rank of matrix A is rank(A) = 2.

Eigenvalues and Eigenvectors:

Eigenvalues and eigenvectors are important concepts in linear algebra. Given a square matrix A, an eigenvector v and its corresponding eigenvalue λ satisfy the equation:

 $Av = \lambda v$

- Eigenvalue: An eigenvalue λ of a matrix A is a scalar such that there exists a non-zero vector v satisfying $Av = \lambda v$.
- Eigenvector: An eigenvector v of a matrix A is a non-zero vector that remains in the same direction after transformation by the matrix A.

Example:

Consider the matrix:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

To find the eigenvalues λ , we solve the characteristic equation $|A - \lambda I| = 0$, where I is the identity matrix. The characteristic equation becomes:

$$\begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^2 - 1 = 0$$

Solving this quadratic equation, we find eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 3$. For each eigenvalue, we find the corresponding eigenvector v by solving the equation $(A - \lambda I)v = 0$. For $\lambda_1 = 1$, we have:

$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} v_1 = 0$$

Solving this system, we find the eigenvector $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Similarly, for $\lambda_2 = 3$, we have:

Solving this system, we find the eigenvector $v_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Thus, the eigenvalues of A are $\lambda_1 = 1$ and $\lambda_2 = 3$, and the corresponding eigenvectors are $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and

 $v_2 = \begin{pmatrix} -1\\ 1 \end{pmatrix}.$

More Examples of Eigenvalues and Eigenvectors: Example:

Consider the matrix:

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

To find the eigenvalues λ , we solve the characteristic equation $|A - \lambda I| = 0$, where I is the identity matrix. The characteristic equation becomes:

$$\begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 1 = (\lambda - 2)(\lambda - 4) = 0$$

Solving this equation, we find eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 4$. For each eigenvalue, we find the corresponding eigenvector v by solving the equation $(A - \lambda I)v = 0$. For $\lambda_1 = 2$, we have:

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} v_1 = 0$$

Solving this system, we find the eigenvector $v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Similarly, for $\lambda_2 = 4$, we have:

$$\begin{pmatrix} -1 & 1\\ 1 & -1 \end{pmatrix} v_2 = 0$$
(1)

Solving this system, we find the eigenvector $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Thus, the eigenvalues of A are $\lambda_1 = 2$ and $\lambda_2 = 4$, and the corresponding eigenvectors are $v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ \end{pmatrix}$

$$v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Cayley-Hamilton Theorem:

The Cayley-Hamilton theorem states that every square matrix A satisfies its own characteristic equation. If A is an $n \times n$ matrix and $p(\lambda)$ is its characteristic polynomial, then the Cayley-Hamilton theorem states that p(A) = 0, where 0 is the zero matrix.

In other words, substituting the matrix A into its characteristic polynomial yields the zero matrix. **Example:**

Consider a 2×2 matrix A:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

The characteristic polynomial of A is given by:

$$p(\lambda) = \det(A - \lambda I) = \det\left(\begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}\right) = (\lambda - a)(\lambda - d) - bc$$

According to the Cayley-Hamilton theorem, we have:

$$p(A) = (A - aI)(A - dI) - bcI = 0$$

Expanding and simplifying this expression, we get:

$$(A - aI)(A - dI) - bcI = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}$$

This verifies the Cayley-Hamilton theorem for a 2×2 matrix.