A differential equation is an equation involving a function and its derivatives. It can be written in the form:

Fz,y, ¢ y", ..., y™) =0

where y is the unknown function of z, and v/, v”, ...,y denote its derivatives with respect to x up to order n.
Exact Differential Equation:
An ezact differential equation is a type of differential equation that can be expressed in the form:

where M (z,y) and N(z,y) are functions of two variables z and y, and their first partial derivatives with respect to
y and z, respectively, are equal, i.e., % = %—]X.

Example:

Consider the differential equation:

(2x 4+ 3y)dx + (z —2y)dy =0
Here, M (z,y) = 2x + 3y and N(z,y) =  — 2y. To check for exactness, we find their partial derivatives:
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Since %—Aj = %—];7, the equation is exact. Homogeneous Differential Equation:

A homogeneous differential equation is a differential equation that can be expressed in the form:
M (z,y) dx + N(z,y)dy =0

where M (z,y) and N(z,y) are functions of two variables x and y, and they are homogeneous functions of the same
degree.
Example:
Consider the differential equation:
(22 +y*) de — zydy =0

Here, M (z,y) = 2% +y? and N(x,y) = —xy. To check for homogeneity, let’s substitute x = Az’ and y = \y’, where
A is a constant:
M’ xy') = (Aa')? + ()2
_ )\2(:1,:/2 +y/2)
= NM(a',y)
Similarly,
NZ', \y') = =z’ Ny
= —\ay
— AZN(J)/’ y/)
Since M(\z', \y’) = A2M (2',y') and N(Az', \y’) = A2N(2’,3), the equation is homogeneous.

Linear First-Order Differential Equation:
A linear first-order differential equation is a differential equation that can be expressed in the form:

d
2+ Pla)y = Qla)
where P(z) and Q(z) are functions of x only.
Example:
Consider the differential equation:
d ,
% + 2zy =€



This is a linear first-order differential equation with P(z) = 2z and Q(z) = e*. First-Order Differential Equation
with Higher Degree:
A first-order differential equation with higher degree typically refers to equations where the highest derivative of
the dependent variable is of order higher than 1. An example is:
d’y  dy
— +z—=—-y=0
dz? " Var Y
This is a first-order differential equation with a second-degree derivative term.
Example:
Consider the differential equation:
d’y  dy
— +z—=—-y=0
dz? "y Y
This equation can be rewritten as:
y'+ay —y=0
where 3" denotes the second derivative of y with respect to x, and y’ denotes the first derivative of y with respect to
z. Linear Differential Equation of Order Greater Than 1:
A linear differential equation of order greater than 1 is a differential equation that can be expressed in the general
form:

ny n—ly dy
an(x)% + anfl(x)m + - taq (x)% +ag(z)y = F(2)
where ap, (), an—1(x),...,a1(x),a0(x) and F(z) are functions of x only, y is the dependent variable, and Z%{ repre-
sents the kth derivative of y with respect to x.

Example:
Consider the linear differential equation of second order:

This equation can be expressed in the general form with n = 2, as(x) = 1, a1(z) = 2, ap(z) = 1, and F(x) = €*.

Example with Solution:
Consider the linear differential equation of second order:

Py dy
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dx? 3dx+ y=0

Solution:
To solve this differential equation, we first find the characteristic equation:

—3r+2=0

The roots of this quadratic equation are r; = 1 and 79 = 2.
Therefore, the general solution of the differential equation is given by:

y(z) = Cre” + Cye?®

where C7 and C5 are arbitrary constants determined by initial conditions or boundary conditions. Example with
Solution:
Consider the linear differential equation of third order:

By d’y | dy
dx3 dx? + dx y

Solution:
To solve this differential equation, we first find the characteristic equation:

P2 4+r—1=0

This can be factored as (r — 1) = 0, so the root r = 1 has a multiplicity of 3.



Therefore, the general solution of the differential equation is given by:
y(x) = (Ol + 021‘ + 03I2)€z

where Cy, Cs, and C3 are arbitrary constants determined by initial conditions or boundary conditions. Example

with Solution:
Consider the linear differential equation of fourth order:

dty &Py Py dy
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dx? dx3 + dz? dx Ty

Solution:
To solve this differential equation, we first find the characteristic equation:

4 462 —4r4+1=0

This equation can be factored as (r — 1)* = 0, so the root 7 = 1 has a multiplicity of 4.
Therefore, the general solution of the differential equation is given by:

y(x) = (C1 + Cox + C32” 4 Cyx®)e”

where C1, Cy, C3, and Cy are arbitrary constants determined by initial conditions or boundary conditions. Types
of Matrices:

1. Row Matrix:

[al a2 DY an]
2. Column Matrix:
b1
b2
b,
3. Square Matrix:
ailr a2 - Aip
az1 Q2 - 42p
ap1  Ap2 - Gnn
4. Diagonal Matrix:
d 0 - 0
0 dy --- 0
0 0 dn
5. Identity Matrix:
1 0 0]
0 1 0
0 0 1]
6. Zero Matrix: _ )
00 --- 0
0 0 0
10 0 0]




Rank of a Matrix:

The rank of a matrix is the maximum number of linearly independent rows or columns in the matrix. It is
denoted by rank(A).

Example:

Consider the matrix A:

1 2 3
A=12 4 6
3 6 9

To find the rank of matrix A, we can perform row operations to reduce it to row-echelon form or reduced
row-echelon form.
For matrix A, we can see that the third row is a multiple of the first row. So, the rank of matrix A is rank(A) = 2.
Example with Solution:
Consider the matrix A:
1 2 3
A=12 4 6
3 6 9
To find the rank of matrix A, we can perform row operations to reduce it to row-echelon form or reduced
row-echelon form.
First, we subtract twice the first row from the second row and thrice the first row from the third row to get:

1 2 3
0 0 O
0 0 0

Since the second and third rows are identical, we only have two linearly independent rows. Therefore, the rank
of matrix A is rank(A) = 2.

Eigenvalues and Eigenvectors:

Eigenvalues and eigenvectors are important concepts in linear algebra. Given a square matrix A, an eigenvector
v and its corresponding eigenvalue \ satisfy the equation:

Av = v

e Eigenvalue: An eigenvalue A of a matrix A is a scalar such that there exists a non-zero vector v satisfying
Av = dv.

e Eigenvector: An eigenvector v of a matrix A is a non-zero vector that remains in the same direction after
transformation by the matrix A.

Example:
Consider the matrix:

=203

To find the eigenvalues A, we solve the characteristic equation |A — AI| = 0, where I is the identity matrix.
The characteristic equation becomes:

‘2_A -1 ‘:(2—/\)2—1:0

-1 2=

Solving this quadratic equation, we find eigenvalues \; =1 and Ay = 3.
For each eigenvalue, we find the corresponding eigenvector v by solving the equation (A — AI)v = 0.

For A\; = 1, we have:
1 -1
(_1 1 > v = 0

. . . 1
Solving this system, we find the eigenvector v; = (1)

-1 -1
(1 1)1}2:0

Similarly, for Ay = 3, we have:



Solving this system, we find the eigenvector vy, = <_11)

Thus, the eigenvalues of A are Ay = 1 and Ay = 3, and the corresponding eigenvectors are v; = G) and

-1
1
More Examples of Eigenvalues and Eigenvectors:

Example:
31
=0 3)

Consider the matrix:
To find the eigenvalues A, we solve the characteristic equation |[A — AI| = 0, where I is the identity matrix.
The characteristic equation becomes:

Vg =

‘3)\ 1

1 3—>\‘:(3_)\)2—1=(>\—2)(>\—4):0

Solving this equation, we find eigenvalues A\; = 2 and Ay = 4.
For each eigenvalue, we find the corresponding eigenvector v by solving the equation (A — AI)v = 0.
For A1 = 2, we have:

. . . 1
Solving this system, we find the eigenvector v, = (_1>.

-1 1
(1 1)’1)220

Solving this system, we find the eigenvector vy, = (1)

Similarly, for Ay = 4, we have:

1
Thus, the eigenvalues of A are Ay = 2 and Ay = 4, and the corresponding eigenvectors are v; = (_11) and

1
1

Cayley-Hamilton Theorem:

The Cayley-Hamilton theorem states that every square matrix A satisfies its own characteristic equation.

If Ais an n X n matrix and p()\) is its characteristic polynomial, then the Cayley-Hamilton theorem states that
p(A) =0, where 0 is the zero matrix.

In other words, substituting the matrix A into its characteristic polynomial yields the zero matrix.

Example:
a b
=0 0)

Consider a 2 x 2 matrix A:
p(A) = det(A — AI) = det <<“ B A de» =(A—a)(A\—d) - be

Vo =

The characteristic polynomial of A is given by:

According to the Cayley-Hamilton theorem, we have:
p(A) =(A—al)(A—dI)—bcl =0

Expanding and simplifying this expression, we get:

(A —al)(A—dI) —bel = <8 8)

This verifies the Cayley-Hamilton theorem for a 2 x 2 matrix.



