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1 Introduction

Group Definition:
A group G is a set together with a binary operation ∗ (often denoted as (G, ∗)) that satisfies the following

properties:

1. Closure: For all a, b ∈ G, a ∗ b ∈ G.

2. Associativity: For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

3. Identity Element: There exists an element e ∈ G such that for all a ∈ G, a ∗ e = e ∗ a = a.

4. Inverse Element: For every a ∈ G, there exists an element a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e, where e
is the identity element.

Example:
Consider the set of integers modulo 4, denoted as Z4 = {0, 1, 2, 3}, with addition modulo 4 as the binary operation.
We can verify that (Z4,+) forms a group:

1. Closure: For any a, b ∈ Z4, a+ b ∈ Z4.

2. Associativity: Addition modulo 4 is associative.

3. Identity Element: The identity element is 0, as a+ 0 = 0 + a = a for all a ∈ Z4.

4. Inverse Element: For each a ∈ Z4, the inverse element a−1 such that a+ a−1 = 0 is simply the negative of
a modulo 4. For example, 1 + 3 = 0, 2 + 2 = 0, and 3 + 1 = 0.

Therefore, (Z4,+) forms a group.
Example: Symmetric Group S3

Consider the set S3 of permutations of three elements, denoted {1, 2, 3}. Let’s denote these permutations as:
The set S3 = {σ1, σ2, σ3, σ4, σ5, σ6} is a group under composition of permutations.
Properties of S3:

1. Closure: The composition of any two permutations in S3 results in another permutation in S3.

2. Associativity: Composition of permutations is associative.

3. Identity Element: The identity permutation, σ1, leaves all elements unchanged when composed with any
other permutation.

4. Inverse Element: Each permutation in S3 has an inverse within S3. For example, σ2 is its own inverse, σ3

is its own inverse, σ4 is its own inverse, σ5 is its own inverse, and σ6 is its own inverse.

Therefore, S3 forms a group under composition of permutations.
Abelian Group Definition:
An Abelian group is a set G equipped with an operation · satisfying the following properties:

1. Closure: For all a, b in G, a · b is also in G.

2. Associativity: For all a, b, c in G, (a · b) · c = a · (b · c).
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3. Identity Element: There exists an element e in G such that for all a in G, a · e = e · a = a.

4. Inverse Element: For every element a in G, there exists an element b in G such that a · b = b · a = e, where
e is the identity element.

5. Commutativity: For all a, b in G, a · b = b · a.

Example:
Consider the set of integers Z under addition. This set forms an Abelian group. Here’s why:

1. Closure: For any integers a and b, a+ b is also an integer.

2. Associativity: For any integers a, b, and c, (a+ b) + c = a+ (b+ c).

3. Identity Element: The identity element for addition is 0, since a+ 0 = 0 + a = a for any integer a.

4. Inverse Element: For any integer a, its inverse under addition is −a, since a+ (−a) = (−a) + a = 0.

5. Commutativity: For any integers a and b, a+ b = b+ a.

Therefore, the set of integers under addition forms an Abelian group.
General Properties of a Group:
A group is a set G equipped with a binary operation (· or simply juxtaposition) that satisfies the following

properties:

1. Closure: For all a, b in G, a · b is also in G.

2. Associativity: For all a, b, c in G, (a · b) · c = a · (b · c).

3. Identity Element: There exists an element e in G such that for all a in G, e · a = a · e = a.

4. Inverse Element: For every element a in G, there exists an element a−1 in G such that a · a−1 = a−1 · a = e,
where e is the identity element.

If the group operation is commutative, i.e., ab = ba for all a, b in G, the group is called an Abelian group.
Composition Table of a Group:
Consider a group G with elements e, a, b, and c, where e is the identity element. Here’s the composition table

for the group:

· e a b c
e e a b c
a a b c e
b b c e a
c c e a b

Each row and column represents an element of the group, and the entry at the intersection of row x and column
y represents the result of combining x and y under the group operation.

Example:
Suppose this group represents the symmetries of a square. Here’s what each element represents:

• e: Identity transformation (doing nothing).

• a: 90-degree clockwise rotation.

• b: Reflection about a vertical axis.

• c: Reflection about a horizontal axis.
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For example, applying a followed by b results in c, which represents a reflection about a diagonal axis.
Similarly, applying b followed by c results in a, which represents a 90-degree clockwise rotation.
Composition Table of a Group:
Consider a group G with elements e, a, b, and c, where e is the identity element. Here’s the composition table

for the group:

· e a b c
e e a b c
a a b c e
b b c e a
c c e a b

Each row and column represents an element of the group, and the entry at the intersection of row x and column
y represents the result of combining x and y under the group operation.

Example:
Suppose this group represents the symmetries of a square. Here’s what each element represents:

• e: Identity transformation (doing nothing).

• a: 90-degree clockwise rotation.

• b: Reflection about a vertical axis.

• c: Reflection about a horizontal axis.

For example, applying a followed by b results in c, which represents a reflection about a diagonal axis.
Similarly, applying b followed by c results in a, which represents a 90-degree clockwise rotation.
Ring Definition:
A ring is a set R equipped with two binary operations, usually denoted as addition (+) and multiplication (·),

satisfying the following properties:

1. Additive Closure: For all a, b in R, a+ b is also in R.

2. Additive Associativity: For all a, b, c in R, (a+ b) + c = a+ (b+ c).

3. Additive Identity: There exists an element 0 in R such that for all a in R, a+ 0 = 0 + a = a.

4. Additive Inverse: For every element a in R, there exists an element −a in R such that a+(−a) = (−a)+a = 0.

5. Multiplicative Closure: For all a, b in R, a · b is also in R.

6. Multiplicative Associativity: For all a, b, c in R, (a · b) · c = a · (b · c).

7. Distributivity: Multiplication distributes over addition, i.e., for all a, b, c in R, a · (b + c) = a · b + a · c and
(a+ b) · c = a · c+ b · c.

A ring may or may not have a multiplicative identity element.
Examples:

1. Integers (Z): The set of integers with the usual addition and multiplication forms a ring.

2. Polynomial Ring: The set of all polynomials with coefficients in a ring R, denoted as R[x], forms a ring.

3. Matrix Ring: The set of all n× n matrices with entries from a ring R, denoted as Mn(R), forms a ring.

Examples of Rings with Solutions:

1. Integers (Z):

• Addition: 3 + 4 = 7, (−2) + 5 = 3, etc.

• Multiplication: 3× 4 = 12, (−2)× 5 = −10, etc.

2. Polynomial Ring (R[x]):
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• Let f(x) = x2 − 2x+ 1 and g(x) = 3x2 + 2x− 5.

• Addition: f(x) + g(x) = (x2 − 2x+ 1) + (3x2 + 2x− 5) = 4x2 + 1.

• Multiplication: f(x) · g(x) = (x2 − 2x+ 1)(3x2 + 2x− 5) = 3x4 − 4x3 − 7x2 + 8x− 5.

3. Matrix Ring (M2(R)):

• Let A =

(
1 2
3 4

)
and B =

(
−1 0
2 5

)
.

• Addition: A+B =

(
1 2
3 4

)
+

(
−1 0
2 5

)
=

(
0 2
5 9

)
.

• Multiplication: This operation can be performed similarly.

Field Definition:
A field is a set F equipped with two binary operations, usually denoted as addition (+) and multiplication (·),

satisfying the following properties:

1. Additive Closure: For all a, b in F , a+ b is also in F .

2. Additive Associativity: For all a, b, c in F , (a+ b) + c = a+ (b+ c).

3. Additive Identity: There exists an element 0 in F such that for all a in F , a+ 0 = 0 + a = a.

4. Additive Inverse: For every element a in F , there exists an element −a in F such that a+(−a) = (−a)+a = 0.

5. Multiplicative Closure: For all a, b in F , a · b is also in F .

6. Multiplicative Associativity: For all a, b, c in F , (a · b) · c = a · (b · c).

7. Distributivity: Multiplication distributes over addition, i.e., for all a, b, c in F , a · (b + c) = a · b + a · c and
(a+ b) · c = a · c+ b · c.

8. Multiplicative Identity: There exists an element 1 in F such that for all a in F , a · 1 = 1 · a = a.

9. Multiplicative Inverse: For every nonzero element a in F , there exists an element a−1 in F such that
a · a−1 = a−1 · a = 1.

Example:
The set of real numbers (R) with the usual addition and multiplication operations forms a field.
Homomorphisms of Rings:
A homomorphism between two rings (R,+, ·) and (S,⊕,⊙) is a function ϕ : R → S that preserves the ring

structure, i.e., for all a, b in R, the following properties hold:

1. Preservation of Addition: ϕ(a+ b) = ϕ(a)⊕ ϕ(b)

2. Preservation of Multiplication: ϕ(a · b) = ϕ(a)⊙ ϕ(b)

3. Preservation of Identity: If R has a multiplicative identity 1R and S has a multiplicative identity 1S , then
ϕ(1R) = 1S

A homomorphism ϕ : R → S is called an isomorphism if it is bijective.
Example:
Consider the rings Z and Z6 under addition and multiplication modulo 6, i.e., Z6 = {0, 1, 2, 3, 4, 5} with operations

modulo 6.
Define the function ϕ : Z → Z6 by ϕ(x) = x mod 6.
This function is a homomorphism because it preserves addition and multiplication modulo 6. For example:

ϕ(3 + 4) = ϕ(7) = 1⊕ 1 = 2

ϕ(3)⊙ ϕ(4) = 3⊙ 4 = 2

Also, ϕ(1) = 1 since 1 is the multiplicative identity in both Z and Z6.
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Thus, ϕ is a homomorphism from Z to Z6.
Example of Homomorphism:
Consider the rings (Z,+, ·) and (Z2,⊕,⊙), where Z is the set of integers and Z2 is the set of integers modulo 2.
Define the function ϕ : Z → Z2 as follows:

ϕ(n) = n mod 2

This function maps every integer n to its remainder when divided by 2.
Preservation of Addition: For any two integers a and b, we have:

ϕ(a+ b) = (a+ b) mod 2 = (a mod 2 + b mod 2) mod 2 = ϕ(a)⊕ ϕ(b)

Preservation of Multiplication: Similarly, for any two integers a and b, we have:

ϕ(a · b) = (a · b) mod 2 = (a mod 2 · b mod

Example of Isomorphism:
Consider the rings (Z,+, ·) and (Z4,⊕,⊙), where Z is the set of integers and Z4 is the set of integers modulo 4.
Define the function ϕ : Z → Z4 as follows:

ϕ(n) = n mod 4

This function maps every integer n to its remainder when divided by 4.
Bijectivity: The function ϕ is bijective because it is both injective and surjective. For every element in Z4, there

exists a unique pre-image in Z.
Preservation of Addition: For any two integers a and b, we have:

ϕ(a+ b) = (a+ b) mod 4 = (a mod 4 + b mod 4) mod 4 = ϕ(a)⊕ ϕ(b)

Preservation of Multiplication: Similarly, for any two integers a and b, we have:

ϕ(a · b) = (a · b) mod 4 = (a mod 4 · b mod 4) mod 4 = ϕ(a)⊙ ϕ(b)

Preservation of Identity: Since 0 is the additive identity in both Z and Z4, and 1 is the multiplicative identity
in both rings, we have:

ϕ(0) = 0 mod 4 = 0

ϕ(1) = 1 mod 4 = 1

Thus, ϕ is an isomorphism from Z to Z4.
Example of Isomorphism:
Consider the rings (Z,+, ·) and (Z3,⊕,⊙), where Z is the set of integers and Z3 is the set of integers modulo 3.
Define the function ϕ : Z → Z3 as follows:

ϕ(n) = n mod 3

This function maps every integer n to its remainder when divided by 3.
Bijectivity: The function ϕ is bijective because it is both injective and surjective. For every element in Z3, there

exists a unique pre-image in Z.
Preservation of Addition: For any two integers a and b, we have:

ϕ(a+ b) = (a+ b) mod 3 = (a mod 3 + b mod 3) mod 3 = ϕ(a)⊕ ϕ(b)

Preservation of Multiplication: Similarly, for any two integers a and b, we have:

ϕ(a · b) = (a · b) mod 3 = (a mod 3 · b mod 3) mod 3 = ϕ(a)⊙ ϕ(b)

Preservation of Identity: Since 0 is the additive identity in both Z and Z3, and 1 is the multiplicative identity
in both rings, we have:

ϕ(0) = 0 mod 3 = 0

ϕ(1) = 1 mod 3 = 1

Thus, ϕ is an isomorphism from Z to Z3.
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