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1 Introduction

Group Definition:
A group G is a set together with a binary operation * (often denoted as (G,x*)) that satisfies the following

properties:
1. Closure: For all a,b € G, axb e G.
2. Associativity: For all a,b,c € G, (a*b)xc=ax* (bxc).
3. Identity Element: There exists an element e € G such that for all a € G, axe =exa = a.

4. Inverse Element: For every a € G, there exists an element a~! € G such that axa™! = a~! *a = e, where ¢

is the identity element.

Example:
Consider the set of integers modulo 4, denoted as Z, = {0,1, 2, 3}, with addition modulo 4 as the binary operation.

We can verify that (Z4,+) forms a group:
1. Closure: For any a,b € Z4, a+ b € Z4.
Associativity: Addition modulo 4 is associative.

Identity Element: The identity element is 0, as a + 0 =04 a = a for all a € Z4.
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Inverse Element: For each a € Z,, the inverse element a~! such that a + a~! = 0 is simply the negative of
a modulo 4. For example, 1+3=0,2+2=0,and 3+1=0.

Therefore, (Z4,+) forms a group.

Example: Symmetric Group S3
Consider the set S3 of permutations of three elements, denoted {1,2,3}. Let’s denote these permutations as:

The set S3 = {01, 02,03,04,05,06} is a group under composition of permutations.

Properties of Sj:

1. Closure: The composition of any two permutations in S3 results in another permutation in Ss.

2. Associativity: Composition of permutations is associative.

3. Identity Element: The identity permutation, o, leaves all elements unchanged when composed with any
other permutation.
4. Inverse Element: Each permutation in S3 has an inverse within S3. For example, o is its own inverse, o3

is its own inverse, o4 is its own inverse, o5 is its own inverse, and og is its own inverse.

Therefore, S3 forms a group under composition of permutations.

Abelian Group Definition:
An Abelian group is a set G equipped with an operation - satisfying the following properties:

1. Closure: For all a,bin G, a - b is also in G.

2. Associativity: For all a,b,¢in G, (a-b)-c=a-(b-c).
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. Identity Element: There exists an element e in G such that for all a in G, a-e =€ -a = a.

Inverse Element: For every element a in G, there exists an element b in G such that a - b =b-a = e, where
e is the identity element.

Commutativity: For all a,bin G,a-b=10"a.

Example:
Consider the set of integers Z under addition. This set forms an Abelian group. Here’s why:

1.
2.
3

4.
d.

Closure: For any integers a and b, a + b is also an integer.

Associativity: For any integers a, b, and ¢, (a +b) +c=a+ (b + ¢).

. Identity Element: The identity element for addition is 0, since a + 0 = 0 + a = a for any integer a.

Inverse Element: For any integer a, its inverse under addition is —a, since a + (—a) = (—a) + a = 0.

Commutativity: For any integers a and b, a +b =0+ a.

Therefore, the set of integers under addition forms an Abelian group.
General Properties of a Group:
A group is a set G equipped with a binary operation (- or simply juxtaposition) that satisfies the following

properties:
1. Closure: For all a,bin G, a-b is also in G.
2. Associativity: For all a,b,cin G, (a-b)-c=a- (b-c).
3. Identity Element: There exists an element e in G such that for all a in G, e-a=a-¢e =a.
4. Inverse Element: For every element a in G, there exists an element ¢! in G such that a-a ! =a ' -a=e,

where e is the identity element.

If the group operation is commutative, i.e., ab = ba for all a,b in G, the group is called an Abelian group.

Composition Table of a Group:

Consider a group G with elements e, a, b, and ¢, where e is the identity element. Here’s the composition table
for the group:
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b

Each row and column represents an element of the group, and the entry at the intersection of row x and column
y represents the result of combining x and y under the group operation.

Example:

Suppose this group represents the symmetries of a square. Here’s what each element represents:

e ¢: Identity transformation (doing nothing).

e a: 90-degree clockwise rotation.

e b: Reflection about a vertical axis.

e ¢: Reflection about a horizontal axis.



For example, applying a followed by b results in ¢, which represents a reflection about a diagonal axis.

Similarly, applying b followed by c results in a, which represents a 90-degree clockwise rotation.

Composition Table of a Group:

Consider a group G with elements e, a, b, and ¢, where e is the identity element. Here’s the composition table
for the group:
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Each row and column represents an element of the group, and the entry at the intersection of row x and column
y represents the result of combining x and y under the group operation.

Example:

Suppose this group represents the symmetries of a square. Here’s what each element represents:

e ¢: Identity transformation (doing nothing).
e a: 90-degree clockwise rotation.

e b: Reflection about a vertical axis.

e ¢: Reflection about a horizontal axis.

For example, applying a followed by b results in ¢, which represents a reflection about a diagonal axis.

Similarly, applying b followed by c results in a, which represents a 90-degree clockwise rotation.

Ring Definition:

A ring is a set R equipped with two binary operations, usually denoted as addition (4) and multiplication (-),
satisfying the following properties:

1. Additive Closure: For all a,b in R, a + b is also in R.

2. Additive Associativity: For all a,b,cin R, (a+b)+c=a+ (b+¢).

Additive Identity: There exists an element 0 in R such that for all @ in R, a+0=0+a = a.

Additive Inverse: For every element a in R, there exists an element —a in R such that a+(—a) = (—a)+a = 0.
Multiplicative Closure: For all a,b in R, a - b is also in R.

Multiplicative Associativity: For all a,b,cin R, (a-b)-c=a- (b-c).
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Distributivity: Multiplication distributes over addition, i.e., for all a,b,cin R, a-(b+¢) =a-b+a-c and
(a+b)-c=a-c+b-c

A ring may or may not have a multiplicative identity element.
Examples:

1. Integers (Z): The set of integers with the usual addition and multiplication forms a ring,.

2. Polynomial Ring: The set of all polynomials with coefficients in a ring R, denoted as R[z], forms a ring.
3. Matrix Ring: The set of all n x n matrices with entries from a ring R, denoted as M,,(R), forms a ring.
Examples of Rings with Solutions:

1. Integers (Z):

e Addition: 3+4 =7, (-2)+5 =3, etc.
e Multiplication: 3 x 4 =12, (—2) x 5 = —10, etc.

2. Polynomial Ring (R[z]):



o Let f(z) =22 — 22 + 1 and g(z) = 322 + 2z — 5.
e Addition: f(z)+g(z) = (2> — 22+ 1) + (32 + 2z — 5) = 42? + 1.
e Multiplication: f(z)-g(z) = (2% — 22 + 1)(322 + 2 — 5) = 32* — 423 — 72?2 + 8z — 5.

3. Matrix Ring (Mz(R)):

1 2 -1 0
oLetA—<3 4)andB—(2 5).

. (1 2 -1 0\ (0 2
.AddlthH.A+B—<3 4>—|—<2 5>_(5 9),

e Multiplication: This operation can be performed similarly.

Field Definition:
A field is a set F' equipped with two binary operations, usually denoted as addition (4) and multiplication (-),
satisfying the following properties:

1. Additive Closure: For all a,bin F', a + b is also in F'.

2. Additive Associativity: For all a,b,cin F, (a+b)+c=a+ (b+ ¢).

3. Additive Identity: There exists an element 0 in F' such that for allain F, a+0=0+4+a = a.

4. Additive Inverse: For every element a in F', there exists an element —a in F' such that a+(—a) = (—a)+a = 0.

5. Multiplicative Closure: For all a,bin F, a-b is also in F'.

6. Multiplicative Associativity: For all a,b,cin F, (a-b)-c=a- (b ¢).

7. Distributivity: Multiplication distributes over addition, i.e., for all a,b,cin F, a-(b+¢) =a-b+a-c and
(a+b)-c=a-c+b-ec

8. Multiplicative Identity: There exists an element 1 in F' such that for all ain F,a-1=1-a = a.

9. Multiplicative Inverse: For every nonzero element a in F, there exists an element a~! in F such that
-1 -1
a-a - =a " -a=1.

Example:

The set of real numbers (R) with the usual addition and multiplication operations forms a field.

Homomorphisms of Rings:

A homomorphism between two rings (R, +,-) and (S,®,®) is a function ¢ : R — S that preserves the ring
structure, i.e., for all a,b in R, the following properties hold:

1. Preservation of Addition: ¢(a + b) = ¢(a) ® ¢(b)
2. Preservation of Multiplication: ¢(a-b) = ¢(a) © ¢(b)

3. Preservation of Identity: If R has a multiplicative identity 1z and S has a multiplicative identity 1g, then
¢(1r) = 1s

A homomorphism ¢ : R — S is called an isomorphism if it is bijective.

Example:

Consider the rings Z and Zg under addition and multiplication modulo 6, i.e., Zg = {0, 1, 2, 3,4, 5} with operations
modulo 6.

Define the function ¢ : Z — Zg by ¢(z) = 2 mod 6.

This function is a homomorphism because it preserves addition and multiplication modulo 6. For example:

pB+4) =0T =161=2

P3)O¢(4)=304=2
Also, ¢(1) = 1 since 1 is the multiplicative identity in both Z and Zs.



Thus, ¢ is a homomorphism from Z to Zg.

Example of Homomorphism:

Consider the rings (Z,+, ) and (Z2, ®, ®), where Z is the set of integers and Z5 is the set of integers modulo 2.
Define the function ¢ : Z — Z5 as follows:

¢(n) =n mod 2

This function maps every integer n to its remainder when divided by 2.
Preservation of Addition: For any two integers a and b, we have:

¢pla+b)=(a+b) mod2=(a mod2+b mod?2) mod?2=¢(a)d ()
Preservation of Multiplication: Similarly, for any two integers a and b, we have:
¢la-b)=(a-b) mod2=(a mod2-b mod

Example of Isomorphism:
Consider the rings (Z,+, ) and (Z4, ®, ®), where Z is the set of integers and Z4 is the set of integers modulo 4.
Define the function ¢ : Z — Z4 as follows:

¢(n) =n mod 4

This function maps every integer n to its remainder when divided by 4.

Bijectivity: The function ¢ is bijective because it is both injective and surjective. For every element in Z,, there
exists a unique pre-image in Z.

Preservation of Addition: For any two integers a and b, we have:

Ppla+b)=(a+b) mod4d=(a mod4d+b mod4) mod4=d¢(a)® o(b)
Preservation of Multiplication: Similarly, for any two integers a and b, we have:
d(a-b)=(a-b) mod4d=(a mod4-b mod4) mod4=a¢(a)®¢(b)

Preservation of Identity: Since 0 is the additive identity in both Z and Z4, and 1 is the multiplicative identity
in both rings, we have:
¢(0)=0 mod4=0

#p(1)=1 mod4=1

Thus, ¢ is an isomorphism from Z to Z4.

Example of Isomorphism:

Consider the rings (Z,+,-) and (Z3,®, ®), where Z is the set of integers and Zs is the set of integers modulo 3.
Define the function ¢ : Z — Z3 as follows:

¢(n) =n mod 3

This function maps every integer n to its remainder when divided by 3.

Bijectivity: The function ¢ is bijective because it is both injective and surjective. For every element in Z3, there
exists a unique pre-image in Z.

Preservation of Addition: For any two integers a and b, we have:

#(a+b)=(a+b) mod3=(a mod3+b mod3) mod3=d¢(a)d @)
Preservation of Multiplication: Similarly, for any two integers a and b, we have:
dla-b)=(a-b) mod3=(a mod3-b mod3) mod3=¢(a)® @)

Preservation of Identity: Since 0 is the additive identity in both Z and Z3, and 1 is the multiplicative identity
in both rings, we have:
¢(0)=0 mod3=0

¢p(1)=1 mod3=1

Thus, ¢ is an isomorphism from Z to Z3.



