III SEM

amittyagiiitkgp

April 2024

1 Introduction

Group Definition:

A group G is a set together with a binary operation * (often denoted as (G, *)) that satisfies the following properties:

- 1. Closure: For all $a, b \in G$, $a * b \in G$.
- 2. Associativity: For all $a, b, c \in G$, (a * b) * c = a * (b * c).
- 3. Identity Element: There exists an element $e \in G$ such that for all $a \in G$, a * e = e * a = a.
- 4. Inverse Element: For every $a \in G$, there exists an element $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$, where e is the identity element.

Example:

Consider the set of integers modulo 4, denoted as $Z_4 = \{0, 1, 2, 3\}$, with addition modulo 4 as the binary operation. We can verify that $(Z_4, +)$ forms a group:

- 1. Closure: For any $a, b \in Z_4, a + b \in Z_4$.
- 2. Associativity: Addition modulo 4 is associative.
- 3. Identity Element: The identity element is 0, as a + 0 = 0 + a = a for all $a \in \mathbb{Z}_4$.
- 4. Inverse Element: For each $a \in Z_4$, the inverse element a^{-1} such that $a + a^{-1} = 0$ is simply the negative of a modulo 4. For example, 1 + 3 = 0, 2 + 2 = 0, and 3 + 1 = 0.

Therefore, $(Z_4, +)$ forms a group.

Example: Symmetric Group S_3

Consider the set S_3 of permutations of three elements, denoted $\{1, 2, 3\}$. Let's denote these permutations as: The set $S_3 = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6\}$ is a group under composition of permutations. **Properties of** S_3 :

- 1. Closure: The composition of any two permutations in S_3 results in another permutation in S_3 .
- 2. Associativity: Composition of permutations is associative.
- 3. Identity Element: The identity permutation, σ_1 , leaves all elements unchanged when composed with any other permutation.
- 4. Inverse Element: Each permutation in S_3 has an inverse within S_3 . For example, σ_2 is its own inverse, σ_3 is its own inverse, σ_4 is its own inverse, σ_5 is its own inverse, and σ_6 is its own inverse.

Therefore, S_3 forms a group under composition of permutations.

Abelian Group Definition:

An Abelian group is a set G equipped with an operation \cdot satisfying the following properties:

- 1. Closure: For all a, b in $G, a \cdot b$ is also in G.
- 2. Associativity: For all a, b, c in G, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

- 3. Identity Element: There exists an element e in G such that for all a in G, $a \cdot e = e \cdot a = a$.
- 4. Inverse Element: For every element a in G, there exists an element b in G such that $a \cdot b = b \cdot a = e$, where e is the identity element.
- 5. Commutativity: For all a, b in $G, a \cdot b = b \cdot a$.

Example:

Consider the set of integers Z under addition. This set forms an Abelian group. Here's why:

- 1. Closure: For any integers a and b, a + b is also an integer.
- 2. Associativity: For any integers a, b, and c, (a + b) + c = a + (b + c).
- 3. Identity Element: The identity element for addition is 0, since a + 0 = 0 + a = a for any integer a.
- 4. Inverse Element: For any integer a, its inverse under addition is -a, since a + (-a) = (-a) + a = 0.
- 5. Commutativity: For any integers a and b, a + b = b + a.

Therefore, the set of integers under addition forms an Abelian group.

General Properties of a Group:

A group is a set G equipped with a binary operation (\cdot or simply juxtaposition) that satisfies the following properties:

- 1. Closure: For all a, b in $G, a \cdot b$ is also in G.
- 2. Associativity: For all a, b, c in $G, (a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- 3. Identity Element: There exists an element e in G such that for all a in G, $e \cdot a = a \cdot e = a$.
- 4. Inverse Element: For every element a in G, there exists an element a^{-1} in G such that $a \cdot a^{-1} = a^{-1} \cdot a = e$, where e is the identity element.

If the group operation is commutative, i.e., ab = ba for all a, b in G, the group is called an Abelian group. Composition Table of a Group:

Consider a group G with elements e, a, b, and c, where e is the identity element. Here's the composition table for the group:

•	e	a	b	c
e	e	a	b	c
a	a	b	c	e
b	b	c	e	a
c	c	e	a	b

Each row and column represents an element of the group, and the entry at the intersection of row x and column y represents the result of combining x and y under the group operation.

Example:

Suppose this group represents the symmetries of a square. Here's what each element represents:

- e: Identity transformation (doing nothing).
- a: 90-degree clockwise rotation.
- b: Reflection about a vertical axis.
- c: Reflection about a horizontal axis.

For example, applying a followed by b results in c, which represents a reflection about a diagonal axis. Similarly, applying b followed by c results in a, which represents a 90-degree clockwise rotation.

Composition Table of a Group:

Consider a group G with elements e, a, b, and c, where e is the identity element. Here's the composition table for the group:

Each row and column represents an element of the group, and the entry at the intersection of row x and column y represents the result of combining x and y under the group operation.

Example:

Suppose this group represents the symmetries of a square. Here's what each element represents:

- e: Identity transformation (doing nothing).
- a: 90-degree clockwise rotation.
- b: Reflection about a vertical axis.
- c: Reflection about a horizontal axis.

For example, applying a followed by b results in c, which represents a reflection about a diagonal axis. Similarly, applying b followed by c results in a, which represents a 90-degree clockwise rotation. **Ring Definition:**

A ring is a set R equipped with two binary operations, usually denoted as addition (+) and multiplication (\cdot) , satisfying the following properties:

- 1. Additive Closure: For all a, b in R, a + b is also in R.
- 2. Additive Associativity: For all a, b, c in R, (a + b) + c = a + (b + c).
- 3. Additive Identity: There exists an element 0 in R such that for all a in R, a + 0 = 0 + a = a.
- 4. Additive Inverse: For every element a in R, there exists an element -a in R such that a+(-a)=(-a)+a=0.
- 5. Multiplicative Closure: For all a, b in $R, a \cdot b$ is also in R.
- 6. Multiplicative Associativity: For all a, b, c in $R, (a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- 7. Distributivity: Multiplication distributes over addition, i.e., for all a, b, c in R, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$.

A ring may or may not have a multiplicative identity element. **Examples:**

- 1. Integers (Z): The set of integers with the usual addition and multiplication forms a ring.
- 2. Polynomial Ring: The set of all polynomials with coefficients in a ring R, denoted as R[x], forms a ring.
- 3. Matrix Ring: The set of all $n \times n$ matrices with entries from a ring R, denoted as $M_n(R)$, forms a ring.

Examples of Rings with Solutions:

- 1. Integers (Z):
 - Addition: 3 + 4 = 7, (-2) + 5 = 3, etc.
 - Multiplication: $3 \times 4 = 12$, $(-2) \times 5 = -10$, etc.
- 2. Polynomial Ring (R[x]):

- Let $f(x) = x^2 2x + 1$ and $g(x) = 3x^2 + 2x 5$.
- Addition: $f(x) + g(x) = (x^2 2x + 1) + (3x^2 + 2x 5) = 4x^2 + 1$.
- Multiplication: $f(x) \cdot g(x) = (x^2 2x + 1)(3x^2 + 2x 5) = 3x^4 4x^3 7x^2 + 8x 5.$
- 3. Matrix Ring $(M_2(R))$:

• Let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 and $B = \begin{pmatrix} -1 & 0 \\ 2 & 5 \end{pmatrix}$.

- Addition: $A + B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 5 & 9 \end{pmatrix}.$
- Multiplication: This operation can be performed similarly.

Field Definition:

A field is a set F equipped with two binary operations, usually denoted as addition (+) and multiplication (\cdot) , satisfying the following properties:

- 1. Additive Closure: For all a, b in F, a + b is also in F.
- 2. Additive Associativity: For all a, b, c in F, (a + b) + c = a + (b + c).
- 3. Additive Identity: There exists an element 0 in F such that for all a in F, a + 0 = 0 + a = a.
- 4. Additive Inverse: For every element a in F, there exists an element -a in F such that a+(-a)=(-a)+a=0.
- 5. Multiplicative Closure: For all a, b in $F, a \cdot b$ is also in F.
- 6. Multiplicative Associativity: For all a, b, c in F, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- 7. Distributivity: Multiplication distributes over addition, i.e., for all a, b, c in F, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$.
- 8. Multiplicative Identity: There exists an element 1 in F such that for all a in F, $a \cdot 1 = 1 \cdot a = a$.
- 9. Multiplicative Inverse: For every nonzero element a in F, there exists an element a^{-1} in F such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$.

Example:

The set of real numbers (R) with the usual addition and multiplication operations forms a field.

Homomorphisms of Rings:

A homomorphism between two rings $(R, +, \cdot)$ and (S, \oplus, \odot) is a function $\phi : R \to S$ that preserves the ring structure, i.e., for all a, b in R, the following properties hold:

- 1. Preservation of Addition: $\phi(a+b) = \phi(a) \oplus \phi(b)$
- 2. Preservation of Multiplication: $\phi(a \cdot b) = \phi(a) \odot \phi(b)$
- 3. Preservation of Identity: If R has a multiplicative identity 1_R and S has a multiplicative identity 1_S , then $\phi(1_R) = 1_S$

A homomorphism $\phi:R\to S$ is called an isomorphism if it is bijective.

Example:

Consider the rings Z and Z_6 under addition and multiplication modulo 6, i.e., $Z_6 = \{0, 1, 2, 3, 4, 5\}$ with operations modulo 6.

Define the function $\phi: Z \to Z_6$ by $\phi(x) = x \mod 6$.

This function is a homomorphism because it preserves addition and multiplication modulo 6. For example:

$$\phi(3+4) = \phi(7) = 1 \oplus 1 = 2$$

 $\phi(3) \odot \phi(4) = 3 \odot 4 = 2$

Also, $\phi(1) = 1$ since 1 is the multiplicative identity in both Z and Z₆.

Thus, ϕ is a homomorphism from Z to Z_6 .

Example of Homomorphism:

Consider the rings $(Z, +, \cdot)$ and (Z_2, \oplus, \odot) , where Z is the set of integers and Z_2 is the set of integers modulo 2. Define the function $\phi: Z \to Z_2$ as follows:

$$\phi(n) = n \mod 2$$

This function maps every integer n to its remainder when divided by 2. **Preservation of Addition:** For any two integers a and b, we have:

 $\phi(a+b) = (a+b) \mod 2 = (a \mod 2 + b \mod 2) \mod 2 = \phi(a) \oplus \phi(b)$

Preservation of Multiplication: Similarly, for any two integers *a* and *b*, we have:

 $\phi(a \cdot b) = (a \cdot b) \mod 2 = (a \mod 2 \cdot b \mod 2)$

Example of Isomorphism:

Consider the rings $(Z, +, \cdot)$ and (Z_4, \oplus, \odot) , where Z is the set of integers and Z_4 is the set of integers modulo 4. Define the function $\phi: Z \to Z_4$ as follows:

 $\phi(n) = n \mod 4$

This function maps every integer n to its remainder when divided by 4.

Bijectivity: The function ϕ is bijective because it is both injective and surjective. For every element in Z_4 , there exists a unique pre-image in Z.

Preservation of Addition: For any two integers *a* and *b*, we have:

$$\phi(a+b) = (a+b) \mod 4 = (a \mod 4 + b \mod 4) \mod 4 = \phi(a) \oplus \phi(b)$$

Preservation of Multiplication: Similarly, for any two integers *a* and *b*, we have:

$$\phi(a \cdot b) = (a \cdot b) \mod 4 = (a \mod 4 \cdot b \mod 4) \mod 4 = \phi(a) \odot \phi(b)$$

Preservation of Identity: Since 0 is the additive identity in both Z and Z_4 , and 1 is the multiplicative identity in both rings, we have:

$$\phi(0) = 0 \mod 4 = 0$$

 $\phi(1) = 1 \mod 4 = 1$

Thus, ϕ is an isomorphism from Z to Z_4 .

Example of Isomorphism:

Consider the rings $(Z, +, \cdot)$ and (Z_3, \oplus, \odot) , where Z is the set of integers and Z_3 is the set of integers modulo 3. Define the function $\phi: Z \to Z_3$ as follows:

$$\phi(n) = n \mod 3$$

This function maps every integer n to its remainder when divided by 3.

Bijectivity: The function ϕ is bijective because it is both injective and surjective. For every element in Z_3 , there exists a unique pre-image in Z.

Preservation of Addition: For any two integers a and b, we have:

 $\phi(a+b) = (a+b) \mod 3 = (a \mod 3 + b \mod 3) \mod 3 = \phi(a) \oplus \phi(b)$

Preservation of Multiplication: Similarly, for any two integers *a* and *b*, we have:

 $\phi(a \cdot b) = (a \cdot b) \mod 3 = (a \mod 3 \cdot b \mod 3) \mod 3 = \phi(a) \odot \phi(b)$

Preservation of Identity: Since 0 is the additive identity in both Z and Z_3 , and 1 is the multiplicative identity in both rings, we have:

$$\phi(0) = 0 \mod 3 = 0$$

 $\phi(1) = 1 \mod 3 = 1$

Thus, ϕ is an isomorphism from Z to Z_3 .